Topic 1: Addressing the Rise of Microplastic Contamination in the Global Food Supply

World Health Organisation

I. Introduction

Microplastic pollution is becoming a bigger human rights issue in addition to an environmental one. Microplastics, which are defined as plastic particles smaller than 5 mm, come from industrial processes, packaging, clothing fibers, cosmetics, and the decomposition of larger plastic waste. After being released into the environment, they enter soil, water systems, food chains, and eventually find their way into the food we eat and the bodies we live in.

The increasing amount of data demonstrating microplastics in drinking water, seafood, meat, dairy, produce, and even human tissue makes this problem urgent. Although the long-term health effects are still unclear, preliminary research points to possible carcinogenic effects, endocrine disruption, and inflammation. In addition to health, this crisis affects vulnerable communities' rights to safe food, health, and the environment.

II. Key Terms

Microplastics: Plastic particles smaller than 5 mm arising from packaging, clothing fibers, cosmetics, industrial processes, and breakdown of larger plastic debris.

Nanoplastics: Particles smaller than 1 μ m, capable of penetrating biological cells and tissues.

Bioaccumulation: The process by which microplastics build up in organisms over time through ingestion.

Endocrine Disruption: A biological effect where chemicals or particles interfere with hormonal systems, potentially causing developmental or reproductive harm.

Global Plastics Treaty: Ongoing UN negotiations (2022–2026) for a legally binding international agreement to regulate plastic production and pollution.

Food Chain Contamination: The process by which pollutants, including microplastics, enter and move up through different levels of global food systems.

III. Past International Actions

UNEP Marine Plastic Debris Report (2016): Flagged microplastics as a major food safety challenge.

UN Resolution 72/277 (2018): Initiated development of a Global Pact for the Environment, strengthening environmental rights.

HRC Resolution 48/13 (2021): Recognized the right to a clean, healthy, and sustainable environment as a fundamental human right.

UNEA-5 (2022): Mandated negotiation of a legally binding Global Plastics Treaty.

WHO Reports (2019, 2022): Confirmed microplastics in drinking water; called for urgent research on health impacts.

European Union (2018–2023): Adopted regional bans on intentionally added microplastics in cosmetics and extended proposals to packaging and industrial uses.

International Maritime Organization: Enacted rules to curb waste discharge into oceans, though enforcement remains weak.

IV. Timeline of Key Events

1950	Global plastic production at 2 million tonnes annually.
1972	First scientific detection of microplastics in marine environments
2016	UNEP highlights microplastics as "threat to food safety."
2017	First studies find microplastics in commercial salt, honey, and bottled water
2019	WHO calls for more research after studies confirm microplastics in drinking water
2021	Microplastics detected in human feces and placental tissue
2023	Harvard, Newcastle, and international studies reveal 5g/week human ingestion
2025	Microplastics confirmed in human blood, organ tissue, and global food chains

V. Current Situation

The current situation regarding microplastic contamination in the food supply is increasingly alarming, with new research constantly expanding our understanding of its pervasiveness and potential risks. As of 2025, humans are estimated to ingest about 5 grams of plastic weekly—the equivalent of a credit card—through food, beverages, and environmental exposure.

Microplastics have been found in seafood, fruits and vegetables, table salt, honey, bottled and tap water, milk, yogurt, and even in human blood, organs, and placental tissue. Critical studies in the past year have demonstrated that everyday activities—such as unwrapping packaged foods or repeatedly opening beverage bottles—introduce significant quantities of micro- and nanoplastics into our meals. Advanced detection methods reveal that foods processed, packaged, or stored in plastic containers are particularly prone to contamination, making food packaging a direct and constant source of dietary microplastics.

Recent scientific findings show that microplastics can pass through filtration systems into water, travel long distances through the air, and enter farmlands via sewage sludge used as fertilizer, contaminating both marine and agricultural food chains. Humans are now believed to consume 46,000 to 52,000 microplastic particles annually, with seafood-heavy diets and communities near plastic pollution sources facing disproportionate risks. Microplastics' capacity to carry toxic additives, phthalates, and heavy metals deepens the danger, and their ability to cross cell membranes has been linked to organ inflammation, oxidative stress, and potential disruptions in neurological, immune, and reproductive systems. Children, pregnant women, and marginalized communities in proximity to plastic processing or dumping sites remain among the most vulnerable populations.

Amidst rising concerns, food companies and regulators are beginning to respond. There is a growing trend toward limiting plastic in food packaging, increasing use of glass and ceramics, and supporting stricter safety standards for food supply chains. Nonetheless, scientific and policy consensus remains incomplete, and the health impacts—especially with long-term, low-level exposure and for sensitive groups—are not fully understood. Emerging research continues to reveal new risks, including evidence of increased rates of microplastics in the human placenta, links to cardiovascular and neurological disorders, and deepening food safety challenges on a global scale.

VI. Major Parties Involved

European Union: The European Union is a global leader in regulating microplastic pollution and food safety. EU member states have collectively pushed for bans on microbeads in cosmetics, restrictions on intentionally added microplastics in food packaging, and more stringent environmental monitoring. The EU's precautionary approach extends to agricultural practices, with several countries banning or limiting the use of sewage sludge as fertilizer due to concerns about plastic contamination. In 2023 and 2025, additional bans targeting glitter and packaging plastics highlighted the region's commitment to safeguarding the food chain.

United States: The United States has enacted specific federal and state-level policies to combat microplastic pollution and its entry into food systems. These include the Microbead-Free Waters Act (2015), which prohibits microbeads in personal care products, as well as recent initiatives to restrict certain plastic additives, improve recycling technologies, and invest in research. States like Maine have banned the use of sewage sludge on farmland to limit contamination, reflecting rising awareness about the connection between plastic waste, agriculture, and food safety.

China: China, as both the world's largest producer and consumer of plastic, faces major challenges with microplastic contamination in food and the environment. The Chinese government has introduced stricter regulations targeting single-use plastics and industrial waste, participated in global cleanup initiatives, and invested in research and technological solutions such as microplastic-filtering devices. China's policies are crucial due to its large-scale plastic manufacturing sector and significant impact on regional and global food security.

Indonesia: Indonesia is a critical country both as a top contributor to marine plastic pollution and as a nation heavily reliant on seafood in its diet.

Indonesian government actions focus on coastal cleanup, education, partnerships with NGOs, and improved waste management to address microplastics in fish and other food products. However, limited infrastructure and funding present ongoing barriers. Indonesia also plays a visible role in international negotiations, highlighting the needs and vulnerabilities of coastal and developing states

VII. Key topics to Debate

- Should access to microplastic-free food be recognized as a basic human right, considering its impact on health, food security, and environmental justice?
- What role should the Human Rights Council play in addressing microplastic contamination as a health and environmental threat, including possible mechanisms for monitoring and enforcement?
- How can developing countries be supported effectively to monitor, mitigate, and adapt to microplastic contamination in their food systems, especially with technology transfer and funding?
- Should the United Nations establish binding international limits on microplastic levels in food and water to ensure consistent global standards?
- What mechanisms can be implemented to hold corporations accountable for microplastic pollution throughout the product lifecycle, including production, packaging, and disposal?
- How can precautionary approaches be balanced with scientific uncertainty regarding long-term health impacts of microplastics in policy-making and international agreements?
- In what ways can policy address environmental and social inequalities related to microplastic exposure, particularly for vulnerable populations and seafood-dependent communities?
- What incentives and frameworks should be developed to promote publicprivate partnership innovation for sustainable food packaging, advanced filtration technologies, and plastic reduction methods?

VIII. Bibliography

Food and Agriculture Organization of the United Nations (FAO). (2021). Microplastics in food and agriculture. Retrieved from https://openknowledge.fao.org/server/api/core/bitstreams/1af02111-204a-4fcb-a622-e5edb856074b/content

European Food Safety Authority (EFSA). (2023). Update on Scientific Colloquium 25: Coordinated approach to assess human health risks of microand nanoplastics in food. Available at: https://www.efsa.europa.eu/en/events/event/update-scientific-colloquium-25-coordinated-approach-assess-human-health

Barboza, L.G.A., et al. (2025). Microplastics in the global food supply: Human health implications and policy challenges. Journal of Environmental Health, 40(2).

Available at: https://www.tandfonline.com/doi/full/10.1080/87559129.2025.2514252

Cox, K.D., et al. (2021). Human consumption of microplastics. Nature Reviews Gastroenterology & Hepatology, 18(4), 223–235. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC7767491/

Food Packaging Forum. (2024). Microplastics and food contact materials: Risks and regulatory developments. (Dossier 13). Retrieved from https://foodpackagingforum.org/wpcontent/uploads/2024/05/FPF Dossier 13 m icroplastics.pdf

Campanale, C., et al. (2020). A detailed review study on potential effects of microplastics and additives of concern on human health. International Journal of Environmental Research and Public Health, 17(4), 1212. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC7268194/

